# Load necessary packages
library(tidyverse)
library(lme4)
library(lmerTest)
library(caret)
# Load the data set
load("data/wido.rdata")
# Load the pre-configured plot base
<- readRDS("objects/plot_base.rds")
plot_base
# Load training and test datasets for cross-validation
<- readRDS("objects/training_datasets.rds")
training_datasets <- readRDS("objects/test_datasets.rds") test_datasets
Piecewise Regression
To illustrate piecewise regression, we fit a two-piece linear-linear model.
To reproduce the results, it is necessary to prepare the data set, plot base, and training and test data sets, as outlined in the “Data Preparation” section.
Preparation
Loading Required Packages and Data
Load the necessary packages, data sets, and other supporting files. Each element serves a specific purpose:
tidyverse
: For data manipulation and visualisation.lme4
andlmerTest
: To fit and analyse mixed-effects models.caret
: To compute model performance indices.plot_base
: A pre-configured ggplot object for visualisation.Training and Test Data sets: Required for cross-validation.
Create time variables
Create time variables for the parameters of the segments:
postD is a dummy variable with 0 for all measurements before the transition and 1 for all measurements after. This quantifies the shift in life satisfaction level post-transition.
preLin has negative values indicating the time before the transition, and is 0 after the transition. This captures the rate of change in life satisfaction pre-transition.
postLin, is 0 before the transition and has positive values afterward indicating the time after the transition. This captures the rate of change in life satisfaction post-transition.
The intercept captures the life satisfaction level before the transition.
# Create time variables
<- wido %>%
wido mutate(postD = if_else(mnths <= 0, 0, 1),
preLin = if_else(mnths <= 0, mnths, 0),
postLin = if_else(mnths <= 0, 0, mnths))
To avoid multicollinearity because we use multiple (correlated) time variables in analysis, standardise the preLin and postLin variables.
# Standardise preLin and postLin
$preLin_s <- scale(wido$preLin)
wido$postLin_s <- scale(wido$postLin) wido
Analysis
Fitting the Model
Fit the piecewise model using the newly created (standardised) time variables. This model includes both fixed and random effects for the time terms to account for person-specific trajectories.
# Fit the piecewise model
<- lmer(
pw ~ postD + preLin_s + postLin_s +
lifesatisfaction + preLin_s + postLin_s | id),
(postD data = wido)
# Display the summary of the model
summary(pw)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: lifesatisfaction ~ postD + preLin_s + postLin_s + (postD + preLin_s +
postLin_s | id)
Data: wido
REML criterion at convergence: 5239.8
Scaled residuals:
Min 1Q Median 3Q Max
-4.9090 -0.4860 0.0641 0.5612 3.9181
Random effects:
Groups Name Variance Std.Dev. Corr
id (Intercept) 0.76547 0.8749
postD 0.61449 0.7839 -0.44
preLin_s 0.05851 0.2419 0.34 -0.09
postLin_s 0.04506 0.2123 0.06 -0.19 -0.40
Residual 0.35199 0.5933
Number of obs: 2322, groups: id, 208
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.17060 0.06676 206.50957 77.451 < 2e-16 ***
postD -0.42436 0.07103 211.09018 -5.974 9.70e-09 ***
preLin_s -0.16439 0.03013 90.22569 -5.456 4.22e-07 ***
postLin_s 0.23386 0.03165 63.12876 7.389 4.15e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) postD prLn_s
postD -0.509
preLin_s 0.223 -0.301
postLin_s 0.247 -0.366 -0.061
# Compute confidence intervals for the model parameters
round(confint(pw), 2)
Computing profile confidence intervals ...
2.5 % 97.5 %
.sig01 0.78 0.98
.sig02 -0.58 -0.27
.sig03 0.08 0.56
.sig04 -0.27 0.33
.sig05 0.66 0.91
.sig06 -0.39 0.26
.sig07 -0.47 0.21
.sig08 0.18 0.31
.sig09 -1.00 0.24
.sig10 0.13 0.29
.sigma 0.57 0.61
(Intercept) 5.04 5.30
postD -0.56 -0.28
preLin_s -0.23 -0.10
postLin_s 0.17 0.30
Visualisation
Bootstrapping Confidence Intervals
Use bootstrapping to estimate the confidence intervals for the predicted values of the model. This provides a robust measure of uncertainty.
# For reproducibility
set.seed(123)
# Bootstrapping for confidence intervals of the predictions
<- bootMer(pw, FUN = function(x) predict(x, newdata = wido, re.form = NA),
boot_results nsim = 1000)
# Extract the 95% confidence intervals from the bootstrapped results
<- apply(boot_results$t, 2, quantile, probs = c(0.025, 0.975))
ci
# Assign the lower and upper bounds to the data
$lower_bound <- ci[1, ]
wido$upper_bound <- ci[2, ] wido
Predicting Average and Individual Trajectories
Predict both the population-level (fixed effects) and individual-level (random effects) trajectories of life satisfaction.
# Predict population-level trajectories based on fixed effects
$lifesatisfaction_pw_f <- predict(pw, newdata = wido, re.form = NA)
wido
# Predict individual-level trajectories based on random effects
$lifesatisfaction_pw_r <- predict(pw, newdata = wido, re.form = NULL) wido
Selecting a Random Sample for Plotting
For better visualisation, select a random sample of individuals to display their individual trajectories.
# For reproducibility
set.seed(123)
# Randomly sample 50 participants
<- sample(unique(wido$id), 50)
rsample_ids
# Filter the data to include only the randomly selected participants
<- wido %>%
wido_rsample filter(id %in% rsample_ids)
Creating the Plot
Combine all elements to create the plot, which includes individual trajectories, the population trajectory, and the confidence interval of the population trajectory.
# Create the plot using the pre-configured plot base
+
plot_base geom_line(
data = wido_rsample,
aes(mnths, lifesatisfaction_pw_r, group = id),
color = "grey70",
linewidth = 0.4
+
) geom_line(
data = wido,
aes(
x = mnths,
y = ifelse(mnths == 0, NA, lifesatisfaction_pw_f)
),color = "firebrick4",
linewidth = 1
+
) geom_ribbon(
data = wido %>% filter(mnths != 0),
aes(ymin = lower_bound, ymax = upper_bound, x = mnths),
alpha = 0.2,
fill = "firebrick4"
+
) ggtitle("Piecewise Linear-Linear Model") +
theme(plot.title = element_text(size = 13, face = "bold"))
Model Performance
Evaluating the Model
Assess the model’s performance using the Bayesian Information Criterion (BIC), R-squared (R²), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).
# Compute BIC for the fitted model
round(BIC(pw), 2)
[1] 5356.08
# Calculate R², MAE, and RMSE for the fixed effects predictions
data.frame(
R2_FE = round(R2(wido$lifesatisfaction_pw_f, wido$m_lifesat_per_mnth), 2),
MAE_FE = round(MAE(wido$lifesatisfaction_pw_f, wido$m_lifesat_per_mnth), 2),
RMSE_FE = round(RMSE(wido$lifesatisfaction_pw_f, wido$m_lifesat_per_mnth), 2)
)
R2_FE MAE_FE RMSE_FE
1 0.27 0.29 0.39
# Calculate R², MAE, and RMSE for the random effects predictions
data.frame(
R2_RE = round(R2(wido$lifesatisfaction_pw_r, wido$lifesatisfaction), 2),
MAE_RE = round(MAE(wido$lifesatisfaction_pw_r, wido$lifesatisfaction), 2),
RMSE_RE = round(RMSE(wido$lifesatisfaction_pw_r, wido$lifesatisfaction), 2)
)
R2_RE MAE_RE RMSE_RE
1 0.77 0.4 0.53
Cross-Validation
To assess the replicability of the model, perform cross-validation using the training and test datasets. For each training dataset, fit the model and compute performance metrics for the associated test dataset R², MAE, and RMSE.
# Initialise vectors to store performance metrics
<- c()
R2_values <- c()
MAE_values <- c()
RMSE_values
# Perform cross-validation
for (i in 1:length(training_datasets)) {
# Get the current training and test dataset
<- training_datasets[[i]]
training_data <- test_datasets[[i]]
test_data
# Create time variables
<- training_data %>%
training_data mutate(postD = if_else(mnths <= 0, 0, 1),
preLin = if_else(mnths <= 0, mnths, 0),
postLin = if_else(mnths <= 0, 0, mnths))
<- test_data %>%
test_data mutate(postD = if_else(mnths <= 0, 0, 1),
preLin = if_else(mnths <= 0, mnths, 0),
postLin = if_else(mnths <= 0, 0, mnths))
# Standardise preLin and postLin
$preLin_s <- scale(training_data$preLin)
training_data$postLin_s <- scale(training_data$postLin)
training_data
$preLin_s <- scale(test_data$preLin)
test_data$postLin_s <- scale(test_data$postLin)
test_data
# Fit the model
<- lmer(
pw ~ postD + preLin_s + postLin_s +
lifesatisfaction + preLin_s + postLin_s | id),
(postD data = training_data)
# Predict fixed effects
<- predict(pw, test_data, re.form = NA)
test_predictions
# Compute average test trajectory
<- test_data %>%
test_data group_by(mnths) %>%
mutate(m_lifesat_per_mnth = mean(lifesatisfaction, na.rm = TRUE))
# Calculate performance metrics
<- c(R2_values, R2(test_predictions, test_data$m_lifesat_per_mnth))
R2_values <- c(MAE_values, MAE(test_predictions, test_data$m_lifesat_per_mnth))
MAE_values <- c(RMSE_values, RMSE(test_predictions, test_data$m_lifesat_per_mnth))
RMSE_values
}
# Compute average performance metrics (mean)
<- mean(R2_values)
average_R2 <- mean(MAE_values)
average_MAE <- mean(RMSE_values)
average_RMSE
# Compute average performance metrics (SD)
<- sd(R2_values)
sd_R2 <- sd(MAE_values)
sd_MAE <- sd(RMSE_values)
sd_RMSE
# Combine the mean and standard deviation into one data.frame
<- data.frame(
combined_metrics Metric = c("R²", "MAE", "RMSE"),
Mean = round(c(average_R2, average_MAE, average_RMSE), 2),
SD = round(c(sd_R2, sd_MAE, sd_RMSE), 2)
)
# Print the combined metrics
print(combined_metrics)
Metric Mean SD
1 R² 0.10 0.07
2 MAE 0.58 0.08
3 RMSE 0.76 0.13